AIAA OC Section

2010 - 2011

AIAA OC SECTIO

FAT PRESENTATION

Y 21, 201

AIAA OC Section

Agenda

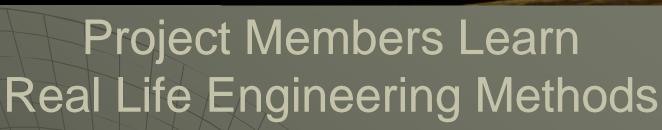
- Team Introduction
- What is SLI?
- What project members learn
- Request for proposal
- Project Summary
- Vehicle Design
- Recovery
- Payload
- GPS System
- Flight Summaries
- Lessons learned
- Web Site
- Educational Outreach
- Questions

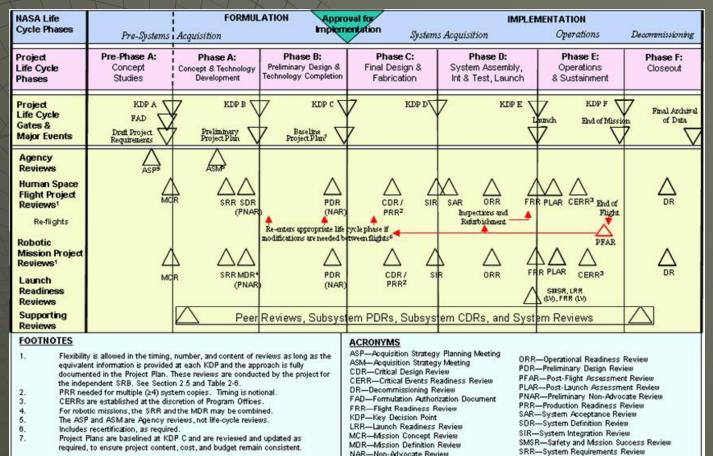
AIAA OC Section

What is SLI

NASA program by invitation only (Middle & High School):

- Top 20 TARC (Team America Rocketry Challenge) teams
- Top 2 Rockets for Schools teams
- Awarded to school/organization of winning team so team members can be added
- If our first year is a success then the team is invited back for a second year
- Very different than TARC (or Rockets for Schools)
- This is not a contest
- Learning opportunity working with NASA including:
 - •Design, construction, and test of a reusable launch vehicle and scientific payload

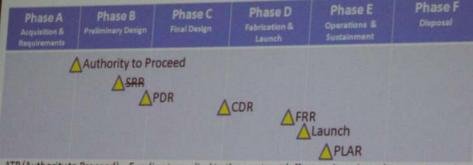

AIAA OC Section



What is SLI (cont.)

- Requires an 8 month commitment
- The team learns and applies:
 - Design, construction, scheduling, purchasing, finance, logistic coordination, arranging press coverage, educational engagement, web site development, and documentation
- Teams members should have diverse interests & skills:
 Engineering, mathematics, science, technology, English, journalism, art, and business
- Designed to interest students in Science, Technology, Engineering and Math
- Organized similar to NASA project life cycle

AIAA OC Section



AIAA OC Section

Scaled down...

Student Launch Projects Life Cycle

- ATP (Authority to Proceed) Funding is applied to the contract/effort and work performance can begin
- SRR (System Requirements Review) Top Level Requirements are converted into system requirements. System Requirements are reviewed and authority is given to proceed into Preliminary Design. The USLI/SLI Project skips this step.
- PDR (Preliminary Design Review) Preliminary Design is reviewed and authority is given to proceed into Final Design.
- CDR (Critical Design Review) Final Design is reviewed and authority is given to proceed to build the system.
- FRR (Flight Readiness Review) As-built design and test data are reviewed and authority is given for Launch.
- PLAR (Post Launch Assessment Report) -

AIAA OC Section

Teamwork

AIAA OC Section

Presentation/People Skills

3 - WebEx with Marshall Space Flight Center

Youth Expo Fair

Youth Groups

Huntsville Rocket Fair

AIAA OC Section

Engineering Tools

AIAA OC Section

AIAA Orange County Section

Student Launch Initiative 2010-2011

Proposal

Project M1 Quantification of the effects of acceleration on hard disk drive latency

AIAA Orange County Section

Student Launch Initiative 2010-2011 **Preliminary Design Review**

Proposal Preliminary Design Review Critical Design Review Flight Readiness Review Post Launch Assessment Review

Technical Writing

Project M1 Quantification of the effects of acceleration on hard disk drive latency

Nearly 300 pages with drawings in five separate documents

AIAA Orange County Section Student Launch Initiative 2010-2011

Flight Readiness Review

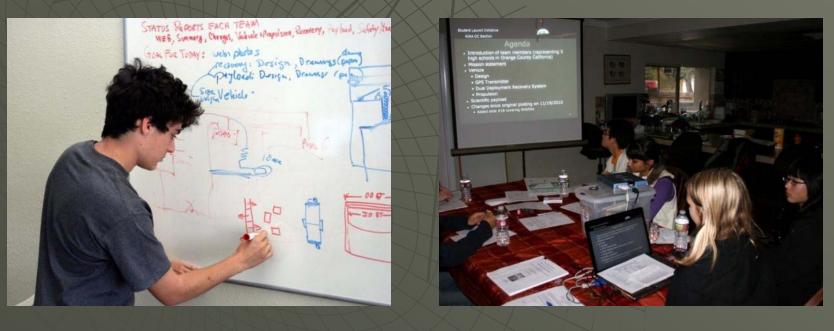
Project M1 Quantification of the effects of acceleration on hard disk drive latency

AIAA Orange County Section Student Launch Initiative 2010-2011

Post Launch Assessment Review

Project M1 Quantification of the effects of acceleration on hard disk drive latency

10

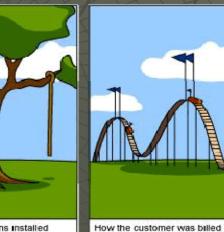

AIAA OC Section

Communications...

I know that you believe you understand what you think I said, but I'm not sure you realize that what you heard is

not what I meant


AIAA OC Section


... and Planning

How the Analyst designed it

How the customer explained it

How the Project Leader

understood it

How the Programmer wrote it

How it was supported

How the Business Consultant described it

What the customer really needed

AIAA OC Section

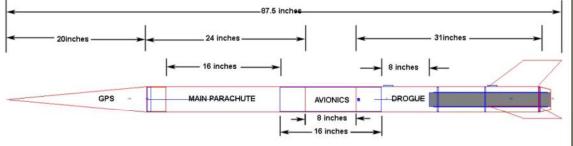
NASA Request for Proposal

- Design a reusable vehicle delivering a science or engineering payload to an altitude of 1 mile
- The total impulse provided by the entire vehicle shall not exceed 2,560 Newton-seconds ("K" class)
- The vehicle shall remain subsonic from launch
- The vehicle must be prepared for flight in < 4Hrs</p>
- Vehicle must return after flight within 2500 ft of pad
- The recovery system shall:
 - Use dual deploy (drogue at apogee + main at altitude)
 - Drogue: 50-100 ft/s Main: 17-22 ft/s
 - Use redundant altimeters armed on the pad
- The payload shall collect data and analyze that data using the scientific method
- Students must do 100% of the work

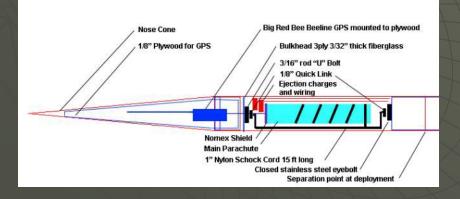
AIAA OC Section

- Aug 2010 NASA submits Request for Proposal
- Sept 2010 We respond with our proposal
- Oct 2010 NASA accepts our proposal
- Nov 2010 Establish web presence
- Nov 2010 -Research, write, post and present (WebEx) PDR
- Dec 2010 Jan 2011- Design, build and fly .65 scale model
- Jan 2011 Research, write, and present (WebEx) CDR
- Feb Mar 2011 Build and fly full size rocket with payload
- March 2011 Research, write, and present (WebEx) FRR
- April 2011 Travel to Huntsville, exhibit at rocket fair and fly rocket
- May 2011 Write and submit PLAR

AIAA OC Section

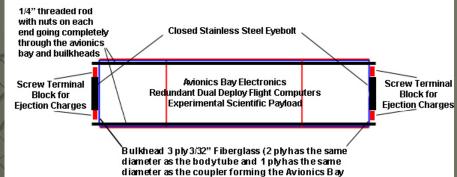

Vehicle Design – Black Brant

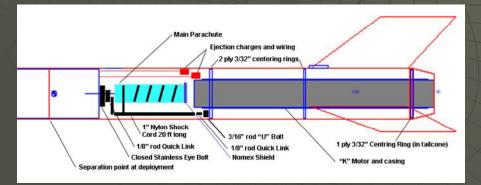
Parameter	Details
Length/Diameter	87.5 inches
Diameter	4 inches
Material (body and fins)	Fiberglass
Center of Pressure / Center of Gravity	62.02 inches / 52.48 inches (from tip of nose cone)
Stability Margin	2.36
Launch Rail type / Length	1 inch / 6 feet
Rail Exit Velocity	55 ft/sec
Weight liftoff/descent	17.75 lbs / 13.85 lbs
Motor (K635) Average Thrust	635 Newtons (142.75 lbs)
Thrust to weight ratio	8.04:1
Maximum Ascent Velocity	686.10 ft/sec (.60 mach)
Maximum Acceleration	434.94 ft/s/s
Peak Altitude	5266 ft


AIAA OC Section

Vehicle - Details

Forward Section



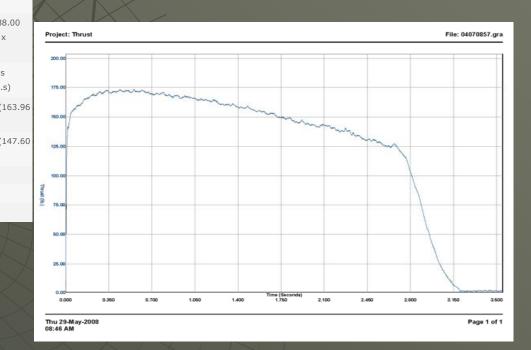

AIAA OC Section

Avionics Bay

Aft Section

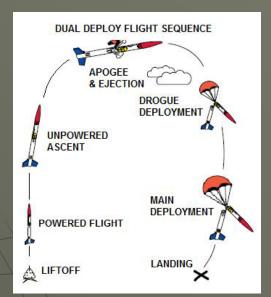
AIAA OC Section

Engine


- Target altitude is 5,280 feet
- Vehicle must remain subsonic from launch until landing
- Motor must lift almost 19 pounds of vehicle and payload with GPS
- Once design was completed launches were simulated using Rocksim (a CAD program for rocket design and simulation)
- Motor selected is Cesaroni K635 Redline
- This selection gives margin if larger or smaller motor is required

AIAA OC Section

Cesaroni K635 Red Lightning


Brandname	Pro54 1994K635-17A	Manufacturer	Cesaroni Technology
Man. Designation	1994K635-17A	CAR Designation	1994-K635-17A
Test Date	7/6/2003		
Single-Use/Reload/Hybrid	Reloadable	Motor Dimensions mm	54.00 x 488.00 mm (2.13 x 19.21 in)
Loaded Weight	1989.90 g (69.65 oz)	Total Impulse	1749.50 Ns (393.64 lb.s)
Propellant Weight	1281.00 g (44.84 oz)	Maximum Thrust	728.70 N (163.96 lb)
Burnout Weight	658.40 g (23.04 oz)	Avg Thrust	656.00 N (147.60 lb)
Delays Tested	17 - 7 secs	ISP	139.30 s
Samples per second	1000	Burntime	2.66 s
Notes	Red Lightning™		

AIAA OC Section

Recovery - Dual Deployment

- Electronics: MAWD Perfect
 Flight, HCX G-Wiz Partners
- The electronics will "back" one another up in case one pyro (either drogue or main) does not fire.
- Drogue Parachute will be deployed at apogee

- Backup charge at 2 seconds after apogee
- Main Parachute will be deployed at 900 ft
- Backup charge at 700 ft

AIAA OC Section

Recovery Electronics

Main Flight Computer

- G-Wiz Partners HCX 56G
- 1.10" x 5.50" 45 grams
- Accelerometer based altitude
- Pyro output at Apogee
- Pyro output at 900 ft altitude
- 9VDC at 65ma for 3 hour battery life
- Separate CPU and Pyro batteries
- Two Safety interlock switch on body tube (1-CPU and 1-Pyro)

Backup Flight Computer

- PerfectFlite MAWD
- .90" x 3.00" 20 grams
- Barometric pressure based altitude
- Pyro output at Apogee + 2 seconds
- Pyro output at 700 ft altitude
- 9VDC at 8ma for 28 hour battery life
 - One battery for both CPU and Pyro Safety interlock switch on avionics bay

AIAA OC Section

Black Powder Charges

- Ejects both drogue and main parachutes
- Calculated by using an online calculator
- Need a minimum of 8.4 psi we chose 16 and 20 psi to give safety margin
- Main 'chute uses 2.5 grams of black powder (on-line calculator)
 - Body tube with the main is 4'' diameter x 18'' long
- Drogue 'chute uses 1.74 grams of black powder (on-line calculator)

- Body tube with the drogue is 4'' diameter x 14'' long

AIAA OC Section

Black Powder Charge

Calculating the black powder charges is a two step process

Pressure needed to shear pins (#2 screws - 3x35lbs each) and eject the parachute. We will use 200lbs (drogue) and 250 lbs (main) to shear pins, overcome friction and eject.

Surface Area = $\pi * r^2$ = 3.14 * 2² = 12.56 in²

For 200 lbs / 12.56 in² = 15.9 PSI

250 lbs / 12.56 in² = 19.9 PSI

- Amount of black powder to reach that pressure
- Grams of Black Powder = C * D² * L

Where: D = Diameter of the airframe in inches L = Length of the airframe in inches C = 0.006 for 15psi and 0.008 for 20 psi.

For a 4" diameter airframe of 17" long, we require

200 lbs (16 psi) = $.0064 * 4^{2}$ in * 17in = 1.74 grams

250 lbs $(20 \text{ psi}) = .008 * 4^2 \text{in} * 17 \text{in} = 2.17 \text{ grams}$ (used 2.50g for added safety)

AIAA OC Section

Parachute Size & Descent Rates

- Rocket mass = 221.65 oz
- Drogue chute diameter = 24 in.
- Main chute diameter = 72 in.
- Calculated projected velocity for each chute with online calculator and by hand
- $v^2 = 2F_D / (\rho)(C_D)(A)$ • $C_D = 1.00$
 - $F_D = mg = (6.285 \text{ kg})(9.8 \text{ m/s}^2)$
- Hand: $v_{drogue} = 60.99$ ft/s Online: $v_{drogue} = 68.57$ ft/s
- Hand: $v_{main} = 17.43$ ft/s Online: $v_{main} = 19.59$ ft/s
- Required: Drogue 50-100 ft/s Main: 17-22 ft/s

AIAA OC Section

Payload What are we testing for

- Hypothesis is that high "G" forces and vibration will dramatically increase the latency time of a hard disk drive
- Method
 - Linux script gets a file from the hard drive
 - The script measures the time that takes
 - Record the time to the thumb drive
 - Repeat as fast as possible (approx 100ms)
- Control: Run test while stationary and record
- Experiment: Run same test at launch

AIAA OC Section

Payload

- G-Wiz Partners HCX flight computer - measures acceleration of the rocket
- Toshiba hard drive test subject; we will run a Linux script on the hard drive over and over again; the time the hard drive takes to run the script each time is measured
- Simple net computer/Linux computer – the mini computer that will execute the Linux script on the hard drive; it will be initialized automatically; the flight data will be recorded on a flash drive inserted into this computer
- Power converter Keeps a steady flow of power to the payload components

AIAA OC Section

Payload Details

On power up, the Linux computer starts executing a shell script that repeatedly writes and reads 32 K Bytes of zeros to the hard drive, logging the time this takes to a flash thumb drive

Program Source Code

#!/bin/sh
PATH=/bin
while true
do
 date >>/var/ftp/LEXAR/log.txt
 time dd if=/dev/zero of=/dev/sda2 bs=65536
 count=32 skip=64>>/var/ftp/LEXAR/log.txt
 2>&1
 time sync >>/var/ftp/LEXAR/log.txt 2>&1
 time dd if=/dev/zero of=/dev/sda2 bs=65536
 count=32 skip=128>>/var/ftp/LEXAR/log.txt
 2>&1
 time sync >>/var/ftp/LEXAR/log.txt 2>&1
 time sync >>/var/ftp/LEXAR/log.txt
 done

Program Output (Log File)

Fri Feb 11 22:36:49 UTC 2011 8+0 records in 8+0 records out real 0m 0.10s user0m 0.00s sys 0m 0.06s Fri Feb 11 22:36:49 UTC 2011 8+0 records in 8+0 records out real 0m 0.20s user0m 0.00s sys 0m 0.06s Fri Feb 11 22:36:49 UTC 2011 8+0 records in 8+0 records out real 0m 0.16s user0m 0.01s sys 0m 0.05s

AIAA OC Section

GPS TRACKING

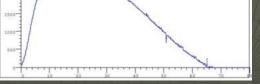
Transmitter in Vehicle

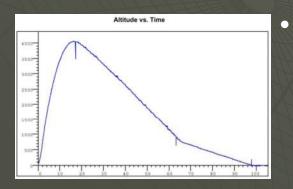
Ground Station

• Big Red Bee Beeline GPS

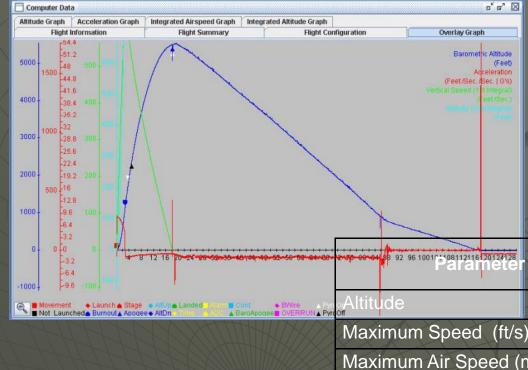
- RF: 17mW on 433.920 MHz
- Battery and life: 750mAh 10 Hrs
- Size: 1.25" x 3" 2 ounces

 Receiver: Yaesu VX-6R • TNC: Byonics Tiny Track 4


- GPS: Garmin eTrex Vista
- Beeline receives GPS position
 - Encodes as AX.25 packet data
 - Sends as 1200 baud audio on 433.92 MHz
- VX-6R receives at 433.92 MHz and extracts audio
- TinyTrack 4 converts audio to digital NMEA location data
- Garmin displays the digital location data on human screen


AIAA OC Section

Full Scale Test Flight Analysis



• First Flight (Partially Successful)

- Cesaroni K400 (1597 Newtons 3.2 sec burn)
- Wind was heavy (15mph)
- Vehicle was stable but weathercocked
- All ejection charges fired at proper times
- Main did not fully deploy
- Reached 3339 ft at apogee
- Second Flight (Fully Successful)
 - Cesaroni K500 (1596 Newtons 4 sec burn)
 - Wind was light/moderate (5-8 mph)
 - Vehicle was stable and flew straight
 - Drogue deployed just after apogee as programmed
 - Main deployed at 900 feet as programmed
 - Reached 4059 ft at apogee

AIAA OC Section

Final Flight -Huntsville

	RockSim	Flight Data from HCX
Pro Altitude	5266 ft	5512 ft
Maximum Speed (ft/s)	686 ft/s	643 ft/s
Maximum Air Speed (mach)	.61	.58
Altitude at maximum airspeed	1031 ft	980 ft
Maximum Acceleration (ft/s)	435 ft/s	284 ft/s
Maximum Acceleration ("G's")	13.59 G's	8.82 G's
Altitude of maximum acceleration	22.73 ft	31.28 ft
Time to booster burn-out	3.13 seconds	2.86 seconds
Altitude of booster burn-out	1234 ft	983.9 ft
Time to apogee	17.66 seconds	18.2 seconds

AIAA OC Section

Full Scale Huntsville Flight Analysis

• Final Flight (Huntsville - Fully Successful)

- Cesaroni K635 (1749 Newton sec 2.6 sec burn)
- Wind was light (under 5 mph)
- Vehicle was stable and flew straight
- Drogue deployed just after apogee as programmed – backup charge ignited as well
- Main deployed at 900 feet as programmed backup charge went off at 700 ft as programmed
- Reached 5512 ft at apogee

Payload Analysis & Results

- The final launch at Huntsville was not alike the last two launches, but we found an outstanding measurement in our data:
- ♦ 32+0 records in
- 32+0 records out
- real 1m 37.96s
- user 0m 0.00s
- sys 0m 0.22s
- real 0m 0.16s
- user 0m 0.00s
- sys 0m 0.03s
- The increase in force caused a tremendous increase in hard drive latency.
- Electromechanical hard drives are not suitable for launch—we recommend a solid-state drive.

AIAA OC Section

Huntsville Launch Video

AIAA OC Section

Construction Details

Process

Details

All fiberglass surfaces are fully scuffed and scratched before they are epoxied.

After scuffing the surfaces are fully cleaned with Isopropyl alcohol to remove dust and any oils or other contamination. All parts are epoxied together using West Systems Epoxy.

Since the bulkheads were only 3/32" thick, three bulkheads were glued together for added strength

Fillets are applied to all joints for added strength

AIAA OC Section

Construction Details cont'd

Process

Details

The Avionics bay uses closed eye bolts since the stresses at ejection can open eyes that are not continuous or welded shut

"U" Bolts are used on the centering rings and top bulkhead also for strength

To assure things fit properly we dry-fit parts together and inserted an engine casing – centering ring "U" bolt, quick link, shock cord. To assure fins aligned properly we used a fin jig

Fiberglass tape was applied to the body tube – fin joint to help reinforce that area Whenever possible, ferrules were crimped on to the end of wires to keep the strands together and make certain there is good connection

AIAA OC Section

Lessons Learned from this project

Lesson	Original Fault	Was it successful
Simplify wiring, color code everything, allow extra space, use ferrules to keep the wires together	The scale model avionics was too crowded, hard to trace. Some wires did not make good contact in terminal blocks	Yes it was successful but we learned we have to be careful so we don't stress the key switches
Always use shear pins to avoid drag or impulse separation	We did not use shear pins and we deployed the main when the drogue deployed	Yes because a subsequent flight deployed drogue and main separately as designed
Stick with your plan and do not let on-site "mentors" sway you	We listened to an on-site mentor when he said we did not need shear pins – rocket was too small	Yes – with all of our research, engineering, and design we did know better than he did
Always test in conditions closest to the final conditions	We tested our black powder charge without the parachute in place to verify the airframe would separate. We should have included the parachute	Yes – in subsequent ground tests successful on flight #2

AIAA OC Section

Website

AIAAOCRocketry.org SLI 2010-2011

- Documents
- Calendar
- Photos/Videos
- Manuals
- MSDS

We, the M1 team from the AIAA Orange County Section, will construct and launch a rocket

AIAA OC Section

Educational Outreach

- Cloverdale 4-H club
- Girl Scouts workshop
- Girl Scouts Launch
- Presentation to AIAA Orange County Section
- Booth at Youth Expo promoting SLI, AIAA, and NAR
- Presentation to Tarbut V' Torah High School
- Presentations to Sunny Hills High School Science classes to get involved
- Articles published in The Foothill Sentry and the Sunny Hills High School Accolade

AIAA OC Section

Thank you AIAA for your support

Questions?